المساعد الشخصي الرقمي

مشاهدة النسخة كاملة : حل فصول الرياضيات الصف الخامس العلمي نبدا اللو غارتم



العلم نور
23-09-2010, 03:32 PM
بسم الله اللاحمن الرحيم اخواني الاعزاء سوف اختص انا بشرع مادة الرياضيات للصف الخامس العلمي وابدا اولا اللاخواني الطلبه الكرام نقوم بطرح اسئله واجوبه لموضوع المتتاليات الحسابيه والهندسيه
للمنهج الجديد ونسال الله لنا ولكم التوفيق

متتابعة حسابية
مجموع ح1 + ح5 = 2
مجموع ح3 + ح4 = 5/4
أوجد مجموع الأربعين حدا الأولى منها ؟

نفرض أن الحد الأول فى المتتابعة الحسابية = أ ، الأساس = د
أ + أ + 4 د = 2 ـــــ> أ = 1 - 2 د ................... (1)
أ + 2 د + أ + 3 د = 5/4 ــــ> أ = (5 - 20 د) /8 ........ (2)
من (1) ، (2)
أ = 5/2 ، د = - 3/4

المتتابعة : 5/2 ، 7/4 ، 1 ، 1/4 ، - 1/2 ، ...

مجموع 40 حدا الأولى = 40/2 × [ 2 × 5/2 + 39 × - 3/4 ] = - 485

---------------------------------------------------------متتابعة حسابية
الحد الأول = 19
الحد الأخير = 95
مجموعها = 1140
أوجد المتتابعة ؟
ثم أوجد مجموع 12 حدا الأخيرة منها

نفرض أن الحد الأول = أ ، الأساس = د ، الحد الأخير = ل
أ = 19
ل = 95 = أ + (ن - 1) د = 19 + (ن - 1) د ............... (1)
ج ن = 1140 = ن/2 × [ أ + ل ] = ن/2 × [ 19 + 95 ] = ن/2 × 114
ومنها : ن = 20 ....................................... (2)
بالتعويض فى (1)
ينتج أن : د = 4 ...................................... (3)

المتتابعة : 19 ، 23 ، 27 ، ...... ، 95

مجموع 12 حدا الأخيرة = مجموع المتتابعة حدودها 20 حدا - مجموع 8 حدا الأولى منها
= 1140 - 8/2 × [ 2 × 19 + 7 × 4 ] = 1140 - 264 = 876

أو
12 حدا الأخيرة :
حدها الأول = ح9 فى المتتابعة الحسابية = أ + 8 د = 19 + 8 × 4 = 51
حدها الأخير = ل = 95
وعدد حدوها = 12
مجموعها = 12/2 × [ 51 + 95 ] = 876

------------------------------------------------متتابعة هندسية لانهائية
حدها الثانى = 2/3
مجموعها = 8/3
أوجد رتبة الحد الذى قيمته = 1/24

نفرض أن الحد الأول = أ ، الأساس = ر
أ ر = 2/3 ـــــــــــــــ> أ = 2/(3 ر) ............. (1)
أ/( 1 - ر) = 8/3
بالتعويض من (1)
2/[ 3 ر (1 - ر) = 8/3
4 ر^2 - 4 ر + 1 = 0
ومنها : ر = 1/2 ــــــــ> أ = 4/3
المتتابعة : 4/3 ، 2/3 ، 1/3 ، 1/6 ، 1/12 ، 1/24 ، ......

نفرض أن رتبة الحد الذى قيمته = 1/24 هو ن
1/24 = أ ر^(ن - 1) = 4/3 × (1/2)^(ن - 1)
(1/2)^(ن - 1) = 1/32 = (1/2)^5
ن - 1 = 5 ــــــــــــ> ن = 6
ويكون هو الحد السادس


---------------------------------------------------------
ح(ن) متتابعة هندسية
ح1 = 32
الحد الأخير = 1/4
مجموع حدودها = 255/4
أوجد عدد حدود المتتابعة ؟
اثبت أنه يمكن جمع عدد غير متناه من حدودها ، وأوجد هذا المجموع

نفرض أن الحد الأول = أ ، الحد الأخير = ل ، الأساس = ر ، عدد الحدود = ن
أ = 32
ل = 1/4 = 32 ر^(ن - 1) ــــ> ر^ن = ر/128
ج(ن) = 255/4 = 32 [ ر^ن - 1 ]/[ر - 1] = 32 [ ر/128 - 1 ]/[ر - 1]
ومنها : ر = 1/2
ل = 1/4 = أ ر(ن - 1) = 32 ر^(ن - 1)
ر^(ن - 1) = 1/128 = (1/2)^7
ن = 8
والمتتابعة : 32 ، 16 ، 8 ، 4 ، 2 ، 1 ، 1/2 ، 1/4

حيث : ا ر ا < 1 ــــ> يمكن إيجاد مجموع حدود لامتناهى من المتتابعة الهندسية
= أ/(1 - ر) = 64

</B></I>
[/URL] [URL="http://www.ahlalanbar.net/report.php?p=384199"] (http://www.ahlalanbar.net/reputation.php?p=384199) و غارتم واني جاهز لاي استفسار

الامير العراقي
23-09-2010, 04:28 PM
مشكور اخويه على مجهودك المميز
دمت بهذا التألق والابداع
ربي يحفظك ويخليك
تحياتي وتقديري الك

ام فيصل
25-09-2010, 03:13 PM
كل الشكر لك عزيزي
على هذا الشرح والتوضيح
جهد طيب
بارك الله فيك
مع تحياتي لك

نهاد محمد خزعل
27-09-2010, 04:32 PM
مجهود رائع

جعله الله في موازين أعمالكم


نهاد